आर्यभटीयम्

अधि विकिपीडिया, एकः स्वतन्त्रविश्वविज्ञानकोश
अत्र गम्यताम् : सञ्चरणं, अन्वेषणम्

आर्यभटेन गणितज्योतिषविषययोः लिखित: ग्रन्थ:। तत्र वराहकल्पस्यास्य सप्तमे मन्वन्तरे वर्तमानाष्टाविंशच्चतुर्थुगस्य कल्पादेः खखषट्वर्गमिते (३६००) सौराब्दे गते त्रयोविंशतिवर्षे आचार्यार्थभटः पुरातनानि कालक्रियागोल- लौकिकगणित – प्रतिपादकानि शास्त्राणि कालदैर्घ्यायत्तसम्प्रदायविच्छेदग्रन्थवैकल्यादि जनितेन दृग्गणितविसंवादेनाकिञ्चित्करण्यालोच्य समदृग्गणितं ज्योतिश्शास्त्रं चिकीर्षुः तादृशज्योतिर्ज्ञानबीजलाभाय ज्योतिश्छक्रग्रहादेरादिवक्तारं भगवन्तं स्वयम्भुवम् अमलैस्तपोभिराराधयामास । ततः प्रसन्नो भगवांस्तस्मै तादृशमतीन्द्रियम् अतिरहस्यभूतं कालक्रिया गोलज्ञानबीजमुपदिदेश । ततोऽयमाचार्यार्यभटस्तदुपदिष्टं सर्वं बीजभूतं दशभिर्गीतिसूत्रैः, तत्परिकरभूतलौकिकगणितवीजं स्वबुध्द्याभ्युहितम् एकेनार्यासूत्रेण च संक्षिप्य लोके प्रकाशयामास । ततोऽष्टाधिकशतैरार्या सूत्रैर्गणित –कालक्रिया – गोलबीजोपयोगं दिङ्मात्रेण दर्शयामास । तदिदमाचार्यार्यभटमुखारविन्दनिर्गतं प्रबन्धद्वयात्मकं ज्योतिश्शास्त्रमस्माभिर्व्याचिख्यासितम् ।

प्रतिपाद्यो विचाराः[सम्पादयतु]

तत्र त्रीणि वस्तूनि प्रतिपाद्यतया प्रतिज्ञातानि- गणितं, कालक्रिया, गोल इति । तत्र गणितं सङ्कलित –व्यवकलितादिमिश्रक- क्षेत्र श्रेढी – कुट्टाकारादि चानेकविधम् । इह तु ज्योतिश्शास्त्रप्रतिपाद्ययोः कालक्रिया – गोलयोर्यावन्मात्रं परिकरभूतं तावन्मात्रमेव सामान्यगणितं प्रतिपाद्यतया प्रतिज्ञायते । कालस्य क्रिया कालक्रिया । कालपरिच्छेदोपायभूतं ग्रहगणितं कालक्रियेत्यर्थः । ब्रह्माण्डकटाहान्तर्त्याकाशमध्यस्थं ग्रहनक्षत्रकक्ष्यात्मकं खमध्यस्थ समघनवृत्तभूमिकं अपक्रमाद्य शेषविशेषोपेतं प्रवहवायुप्रेरणान्नित्यं पश्चिमाभिमुखं गच्छत् स्थलजलसीमास्थानां सर्वाश्चर्यमयं कालचक्र –ज्योतिश्छक्र- भपञ्जरादि शब्दवाच्यो गोलः । स च वृत्तक्षेत्रत्वात् चतुरश्राद्यनेक क्षेत्रकल्पनाधारत्वाच्च गणितविशेषगोचर एव । एवमेतानि त्रीणि वस्तूनि व्याख्यातानि ।

एतत् त्रयमपि प्रत्येकं द्विविधम् – उपदेशमात्रावसेयं, तन्मूलन्यायावसेयं चेति । तत्र एतावद् युगप्रमाणम्, एतावन्तो युगे ग्रहमन्दशीघ्रीच्चपातनक्षत्राणां परिवर्ताः, एतावान्मन्दपरिधिः , एतावान् श्रीघ्रपरिधिः, एतवान् ग्रहाणां परमापक्रमः, एतावांश्चन्द्रादीनां परमविक्षेपः, एतावद् ब्रह्मदिनप्रमाणम्, तद्गतमेतावद्, एतावती युगे योजनात्मिका ग्रहगतिः , एतावती ग्रहकक्ष्या इत्येवमादिकं वस्तुजातम् उपदेशमात्रावसेयम् । एतदुपदेशं विना प्रमाणान्तरेणावगन्तुं न शक्यते । एतस्यातीन्द्रियस्य ग्रहगतिबीजस्य निरवशेषप्रतिपादनाय दशगीतिसूत्रारम्भः ।

एतावतैव कृत्स्नं गणितस्कन्धगतार्थजातं परिसमाप्तम् । इतोऽन्यत्सर्वं न्यायसिध्दत्वाद् बुध्दिमद्भिरभ्यूह्य प्रतिपादयितुं शक्यते । तथा हि –गणितपादोक्तानि चतुरश्र- त्र्यश्रक्षेत्रादिफलानि, त्रैराशिकादीनि कुट्टाकारपर्यन्तानि च गणितानि तावल्लौकिकगणितन्यायसिध्दानि सर्वैरभ्यूहितुं शक्यन्त एव ।

कालिक्रयापादोक्तान्यपि तथाविधान्येव । भूदिनानि तावद् रविनक्षत्रभगणयोरुपदेशाल्लोकसिध्देन द्वियोगन्यायेन तयोरन्तरं कृत्वा ज्ञातुं शक्यन्ते । तानि च ग्रहादिमध्यमानयने प्रमाणराशिः । युगरविमासाश्च युगरव्यब्दोपदेशाद् वर्षस्य च द्वादशमासत्वेन लोकसिध्दत्वाद्, युगरव्यब्दद्वादशगुणनयैव सिध्दयन्ति । रविशशियोगस्य चान्द्रमासत्वाद् रविशशिभगणविशेष एव चान्द्रमासा भवन्ति ।एकस्य चान्द्रमासस्य त्रिंशत्तिथ्यात्मकत्वेन प्रसिध्दत्वात् ते त्रिंशदगुणिता युगतिथयः स्युः अवमदिनस्य शशिसावन दिनन्तरत्वाद् युगसावनयुगचन्द्रदिनान्तरं युगावमदिनानि । आन्द्रसौरमासान्तरस्य अधिकमासत्वप्रसिध्द्या युगाधिमासानयनमपि स्पष्टम् । एवम् एतैः परिकरभूतैरिष्टकालत्रैराशिकेन गत सौरमासतिथिषु याताधिकावमादीनि संसाध्य गतमासतिथिषु तद्योगशोधनेन कलियातदिनानि ज्ञातुं शक्यन्ते । तानि च इच्छाराशिः । फलराशिश्च इष्टग्रहादेर्युगभगणाः । एवमेतैस्रैराशिकगणितेन ग्रहमध्यमाः सिध्यन्ति । उच्चमध्यमे ग्रहमध्यमे च ज्ञाते उच्चमध्यमसमो ग्रहमध्यम एव स्फुटः । तयोः कक्ष्यामण्डलस्योच्चनीचरेखायाः परमविश्लेषो राशित्रयम् । तत्रत्येन मध्यमस्फुटान्तरेण व्यासार्धेन निष्पन्नाः पठिताः परिधयः । इष्टकालग्रहोच्चान्तरस्य त्रैराशिकेन तात्कालिकमध्यमस्फुटान्तरमानीय मध्यमग्रहतत्संयोगवियोगाभ्यामेव पारमार्थिकग्रहसिध्दिः । तथा शीघ्रोच्चोपदेशो येषामस्ति ते शिघ्रोच्चस्वान्तरेत्त्पन्नेन फलेनापि संस्कृताः पारमार्थिका भवन्ति । इत्येतान्यन्यानि च कालक्रियापादोक्तानि अर्थजातानि सर्वाण्युपद्शमूलन्यायावसेयान्येव । तथा गोलपादोक्तान्यपि तथाविधान्येव । तथा हि – स्थलजलसीमायां लङ्कामधिकृत्या पक्रमोपदेशात् पूर्वपराया उत्तरेण दक्षिणेन चापक्रान्तं किञ्चिदुन्मण्डलमस्तीति शक्यं कल्पयितुम् । अपमण्डालात् प्रभृति विक्षेपोपदेशात् तदुत्तरतो दक्षिणतश्च स्थितं किञ्चिन्मण्डलमस्तीत्यपि शक्यं कल्पयितुम् । एवमन्यान्यपि गोलपादोक्तान्यर्थजातानि बीजोपदेशवत् सुतरां न्यायपथमधिरोहन्ति ।

ग्रन्थपरिचयः[सम्पादयतु]

अस्मिन् ग्रन्थे अष्टाधिकशतपद्यानि सन्ति। अतः एव एतत् पुस्तकम् आर्यशताष्टकम् इति नामनि प्रसिद्धम् अस्ति। अस्मिन् चत्वारः खण्डाः सन्ति। भास्करः एतत् पुस्तकम् अश्मकतन्त्रम् इति कथयति।

  • १) गीतिकपाद: - अस्मिन् कालमात्रघटकाः वर्णिताः। अस्मिन् ज्य कोश अपि अस्ति।
  • २)गणितपाद: - अस्मिन् क्षेत्रव्यवहारः, शङ्खुयन्त्रमन्त्रम्, कुट्टकाः च वर्णिता:।
  • ३)कालक्रियापाद: - कालगणनम् अस्मिन् भणितम्।
  • ४)गोलपाद:-नक्षत्रविद्या अस्मिन् वर्णिता अस्ति।

सः अलिखत् - "चतुरधिकम् शतमष्टगुणम् द्वाषष्ठिस्तथा सहस्राणाम्। अयुतद्वयविश्कम्भस्यासन्नो व्रित्तपरिणहः॥"

मात्रगणनं त्रिकोणमात्रम् च[सम्पादयतु]

आर्यभट उवाच- "त्रिभुजस्य फलशरीरम् समदलकोटि भुजार्धसम्वर्गः।"

सः सैन् इति अनुपातम् ज्य इति अकथयत् कोसिन् इति अनुपातम् कोज्य इति च।

बीजगणितम्[सम्पादयतु]

सः वर्गाणां घनानं पङ्क्तीनां सम्पर्कान् अगणयत्।

ज्योतिषम्[सम्पादयतु]

सुर्यग्रहचलनम्[सम्पादयतु]

"अचलानि भानि पश्चिमाग्नि"-आर्यभटः

ग्रहणम्[सम्पादयतु]

सः भूरदयः ग्रहाः सुर्यस्य ज्योतिम् म्रिष्ट्वा एव शोभन्ते इति उवाच। सः ग्रहणम् भूछायया एव कृतम् न तु राहुकेतुभ्याम् इति उक्तवान् ।

भूचक्रपरिधिः[सम्पादयतु]

सः भूचक्रपरिधिः 39,968.0582 कि.मी इति सम्यक् उक्तवान्।


बाह्यसम्पर्कतन्तुः[सम्पादयतु]

"http://sa.wikipedia.org/w/index.php?title=आर्यभटीयम्&oldid=281302" इत्यस्माद् पुनः प्राप्तिः